Company Name: Xiamen Powerway Advanced Material Co., Ltd
Tel: +86-592-5601404
Fax: +86-592-5745822
E-Mail: sic@powerwaywafer.com

Address: #3007-3008, No.89, Anling,Huli Developing Zone, Xiamen,China
Home > Knowledge > 5.Silicon Carbide Technology > 5.5.1 Choice of Polytype for Devices
5.5.1 Choice of Polytype for Devices

5.5 SiC Device Fundamentals

5.5.1 Choice of Polytype for Devices
As discussed in Section 4, 4H- and 6H-SiC are the far superior forms of semiconductor device quality SiC commercially available in mass-produced wafer form. Therefore, only 4H- and 6H-SiC device processing methods will be explicitly considered in the rest of this section. It should be noted, however, that most of the processing methods discussed in this section are applicable to other polytypes of SiC, except for the case of a 3C-SiC layer still residing on a silicon substrate, where all processing temperatures need to be kept well below the melting temperature of silicon (~1400°C). It is generally accepted that 4H-SiC’s substantially higher carrier mobility and shallower dopant ionization energies compared to 6H-SiC  (Table 5.1) should make it the polytype of choice for most SiC electronic devices, provided that all other device processing,performance, and cost-related issues play out as being roughly equal between the two polytypes. Furthermore, the inherent mobility anisotropy that degrades conduction parallel to the crystallographic c-axis in 6H-SiC particularly favors 4H-SiC for vertical power device configurations (Section the 5.6.4). Because the ionization energy of the p-type acceptor dopants is significantly deeper than for the n-type donors, a much higher conductivity can be obtained for the n-type SiC substrates than for the p-type substrates.